hbp_nrp_cle.tf_framework package¶
This package contains the classes to specify transfer functions and connect them to communication adapters of both the neuronal simulator and the world simulator
- 
exception BrainParameterException(message)[source]¶
- Bases: - Exception- Exception raised when a brain connection parameter fails to create the underlying adapter - Parameters
- source – the exception source 
- message – the brain 
 
 
- 
exception TFException(tf_name, message, error_type)[source]¶
- Bases: - hbp_nrp_cle.tf_framework.UserCodeException- Exception class used to return a meaningful message to ExD front-end in case the update of TF’s user code fails. - Parameters
- tf_name – name of the TF updated by the user. 
- message – message that needs to be forwarded to the front-end. 
 
 
- 
exception TFLoadingException(tf_name, message)[source]¶
- Bases: - hbp_nrp_cle.tf_framework.TFException- Exception class used to return a meaningful message to ExD front-end in case the loading of a TF with updated user code fails. - Parameters
- tf_name – name of the TF updated by the user. 
- message – message that needs to be forwarded to the front-end. 
 
 
- 
exception TFRunningException(message)[source]¶
- Bases: - hbp_nrp_cle.tf_framework.UserCodeException- Exception class used to communicate the TF with the TransferFunction manager - Parameters
- tf_name – name of the TF updated by the user. 
- message – message that needs to be forwarded to the front-end. 
 
 
- 
exception UserCodeException(message, error_type)[source]¶
- Bases: - Exception- General exception class returning a meaningful message to the ExD frontend when user code fails to be loaded or run. - Parameters
- message – message that needs to be forwarded to the frontend. 
- error_type – Type of error (like ‘CLE Error’) 
 
 
- 
activate_transfer_function(tf, activate)[source]¶
- Set the activation state of the transfer function In case of errors the change is not applied. - Parameters
- tf – the tf to (de-)activate 
- activate – a boolean value denoting the new activation state 
 
 
- 
chain_neurons(*neuron_selectors)[source]¶
- Chains the given neuron selectors - Parameters
- neuron_selectors – The neuron selectors 
 
- 
cle_write_guard(ob)¶
- No guard at all 
- 
delete_flawed_transfer_function(name)[source]¶
- Delete a flawed transfer function. If the transfer function does not exist, nothing will happen. - Parameters
- name – The name of the transfer function 
- Returns
- True if the transfer function is correctly deleted. False if the transfer function does not exist. 
 
- 
delete_transfer_function(name)[source]¶
- Delete a transfer function. If the transfer function does not exist, nothing will happen. - Parameters
- name – The name of the transfer function 
- Returns
- True if the transfer function is correctly deleted. False if the transfer function does not exist. 
 
- 
dump_csv_recorder_to_files()[source]¶
- Find out all CSV recorders and dump their values to CSV files. - Returns
- an array containing a string with the CSV filename, an array containing the CSV headers separated by a comma and an array containing the CSV values 
 
- 
get_brain_populations()[source]¶
- Get the brain populations as a dictionary If the brain model is not loaded, the function returns None. - Returns
- A dictionary containing the brain populations The dictionary keys are population names and its values are one of the following types: list, or a ‘slice’ dictionary of the following form {‘from’: 1, ‘to’: 10, ‘step’: 1}. 
 
- 
get_brain_source()[source]¶
- Get the source of the brain (if loaded from a python file). Otherwise, returns None. - Returns
- The source of the brain model 
 
- 
get_flawed_transfer_function(name)[source]¶
- Get the flawed transfer function with the given name - Parameters
- name – The name of the flawed transfer function 
- Returns
- The flawed transfer function with the given name 
 
- 
get_transfer_function(name)[source]¶
- Get the transfer function with the given name - Parameters
- name – The name of the transfer function 
- Returns
- The transfer function with the given name 
 
- 
get_transfer_functions(flawed=True)[source]¶
- Get all the transfer functions if flawed is True, only (R2N, N2R, Silent) otherwise - Returns
- All the transfer functions if flawed is True, only (R2N, N2R, Silent) otherwise. 
 
- 
initialize(name)[source]¶
- Initializes and starts the TF node - Parameters
- name – The name of the TF node 
 
- 
map_neurons(neuron_range, mapping)[source]¶
- Maps the given range to neurons using the provided mapping - Parameters
- neuron_range – A range that can be iterated 
- mapping – A mapping function or lambda 
 
 
- 
nrange(start, stop, step=None)[source]¶
- Defines a range of neurons - Parameters
- start – The start of the range 
- stop – The stop of the range 
- step – The step of the range 
 
 
- 
resolve(fun)[source]¶
- Resolves the given function when the neural network is available - Parameters
- fun – The function that selects the item from the network 
 
- 
resolve_brain_variable(var)[source]¶
- Resolves the given brain variable for the current brain - Parameters
- var – The brain variable 
- Returns
- If the variable does not depend on the neural network, it is returned unchanged. Otherwise, it is resolved for the current neural network 
 
- 
set_flawed_transfer_function(source, name='NO_NAME', error=None)[source]¶
- Creates a new flawed transfer function, i.e. a TF that is not valid due to some error in the source code. The user will correct it at a later stage (e.g. during an experiment) - Parameters
- source – the source code 
- name – The name of the transfer function 
- error – the Exception raised during the compilation/loading of the code 
 
 
- 
set_nest_adapter(nest_adapter)[source]¶
- Sets the brainsim adapter. - Parameters
- nest_adapter – The brainsim adapter 
 - Warning - Must be executed before tf node initialization 
- 
set_robot_adapter(robot_adapter)[source]¶
- Sets the robot adapter. - Parameters
- robot_adapter – The robot adapter 
 - Warning - Must be executed before tf node initialization 
- 
set_transfer_function(new_source, new_code, new_name, activation=True, priority=None)[source]¶
- Apply transfer function changes made by a client - Parameters
- new_source – Transfer function’s updated source 
- new_code – Compiled code of the updated source 
- new_name – Transfer function’s updated name 
- activation – Activation state of the transfer function 
- priority – execution order of the transfer function. Transfer functions with higher priority are executed first.