hbp_nrp_cle.tf_framework package¶
This package contains the classes to specify transfer functions and connect them to communication adapters of both the neuronal simulator and the world simulator
-
exception
BrainParameterException
(message)[source]¶ Bases:
Exception
Exception raised when a brain connection parameter fails to create the underlying adapter
- Parameters
source – the exception source
message – the brain
-
exception
TFException
(tf_name, message, error_type)[source]¶ Bases:
hbp_nrp_cle.tf_framework.UserCodeException
Exception class used to return a meaningful message to ExD front-end in case the update of TF’s user code fails.
- Parameters
tf_name – name of the TF updated by the user.
message – message that needs to be forwarded to the front-end.
-
exception
TFLoadingException
(tf_name, message)[source]¶ Bases:
hbp_nrp_cle.tf_framework.TFException
Exception class used to return a meaningful message to ExD front-end in case the loading of a TF with updated user code fails.
- Parameters
tf_name – name of the TF updated by the user.
message – message that needs to be forwarded to the front-end.
-
exception
TFRunningException
(message)[source]¶ Bases:
hbp_nrp_cle.tf_framework.UserCodeException
Exception class used to communicate the TF with the TransferFunction manager
- Parameters
tf_name – name of the TF updated by the user.
message – message that needs to be forwarded to the front-end.
-
exception
UserCodeException
(message, error_type)[source]¶ Bases:
Exception
General exception class returning a meaningful message to the ExD frontend when user code fails to be loaded or run.
- Parameters
message – message that needs to be forwarded to the frontend.
error_type – Type of error (like ‘CLE Error’)
-
activate_transfer_function
(tf, activate)[source]¶ Set the activation state of the transfer function In case of errors the change is not applied.
- Parameters
tf – the tf to (de-)activate
activate – a boolean value denoting the new activation state
-
chain_neurons
(*neuron_selectors)[source]¶ Chains the given neuron selectors
- Parameters
neuron_selectors – The neuron selectors
-
cle_write_guard
(ob)¶ No guard at all
-
delete_flawed_transfer_function
(name)[source]¶ Delete a flawed transfer function. If the transfer function does not exist, nothing will happen.
- Parameters
name – The name of the transfer function
- Returns
True if the transfer function is correctly deleted. False if the transfer function does not exist.
-
delete_transfer_function
(name)[source]¶ Delete a transfer function. If the transfer function does not exist, nothing will happen.
- Parameters
name – The name of the transfer function
- Returns
True if the transfer function is correctly deleted. False if the transfer function does not exist.
-
dump_csv_recorder_to_files
()[source]¶ Find out all CSV recorders and dump their values to CSV files.
- Returns
an array containing a string with the CSV filename, an array containing the CSV headers separated by a comma and an array containing the CSV values
-
get_brain_populations
()[source]¶ Get the brain populations as a dictionary If the brain model is not loaded, the function returns None.
- Returns
A dictionary containing the brain populations The dictionary keys are population names and its values are one of the following types: list, or a ‘slice’ dictionary of the following form {‘from’: 1, ‘to’: 10, ‘step’: 1}.
-
get_brain_source
()[source]¶ Get the source of the brain (if loaded from a python file). Otherwise, returns None.
- Returns
The source of the brain model
-
get_flawed_transfer_function
(name)[source]¶ Get the flawed transfer function with the given name
- Parameters
name – The name of the flawed transfer function
- Returns
The flawed transfer function with the given name
-
get_transfer_function
(name)[source]¶ Get the transfer function with the given name
- Parameters
name – The name of the transfer function
- Returns
The transfer function with the given name
-
get_transfer_functions
(flawed=True)[source]¶ Get all the transfer functions if flawed is True, only (R2N, N2R, Silent) otherwise
- Returns
All the transfer functions if flawed is True, only (R2N, N2R, Silent) otherwise.
-
initialize
(name)[source]¶ Initializes and starts the TF node
- Parameters
name – The name of the TF node
-
map_neurons
(neuron_range, mapping)[source]¶ Maps the given range to neurons using the provided mapping
- Parameters
neuron_range – A range that can be iterated
mapping – A mapping function or lambda
-
nrange
(start, stop, step=None)[source]¶ Defines a range of neurons
- Parameters
start – The start of the range
stop – The stop of the range
step – The step of the range
-
resolve
(fun)[source]¶ Resolves the given function when the neural network is available
- Parameters
fun – The function that selects the item from the network
-
resolve_brain_variable
(var)[source]¶ Resolves the given brain variable for the current brain
- Parameters
var – The brain variable
- Returns
If the variable does not depend on the neural network, it is returned unchanged. Otherwise, it is resolved for the current neural network
-
set_flawed_transfer_function
(source, name='NO_NAME', error=None)[source]¶ Creates a new flawed transfer function, i.e. a TF that is not valid due to some error in the source code. The user will correct it at a later stage (e.g. during an experiment)
- Parameters
source – the source code
name – The name of the transfer function
error – the Exception raised during the compilation/loading of the code
-
set_nest_adapter
(nest_adapter)[source]¶ Sets the brainsim adapter.
- Parameters
nest_adapter – The brainsim adapter
Warning
Must be executed before tf node initialization
-
set_robot_adapter
(robot_adapter)[source]¶ Sets the robot adapter.
- Parameters
robot_adapter – The robot adapter
Warning
Must be executed before tf node initialization
-
set_transfer_function
(new_source, new_code, new_name, activation=True, priority=None)[source]¶ Apply transfer function changes made by a client
- Parameters
new_source – Transfer function’s updated source
new_code – Compiled code of the updated source
new_name – Transfer function’s updated name
activation – Activation state of the transfer function
priority – execution order of the transfer function. Transfer functions with higher priority are executed first.